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Abstract—  The work presented in this paper deals with 
the sensors faults detection using the interval analysis. The 
presented method is then applied to the nonlinear systems 
described by multiple model structures; the interval analy-
sis is used to estimate the output in the case of system 
measurement uncertainties. The proposed technique is in-
sensitive to measurement uncertainties and highly reliable 
in case of a fault affecting the system. 
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I. INTRODUCTION 

An accurate representation of the system model is the chal-
lenge faced by the scientific community. Several methods 
have been proposed to model the behavior of systems in order 
to ensure their supervision. Indeed all faults must be detected 
to ensure the materials and human security. Hardware redun-
dancy is often considered to detect and locate faults solution, 
or any material is ideal. Each instrument has an uncertainty 
which is often indicated by the manufacturer. 

In this work a method for diagnosis of nonlinear systems 
with measurement uncertainties is proposed. The presented 
method is based on the interval analysis as tools for state esti-
mation, detection and fault location. 

Generally, faults can be detected by performing consisten-
cy checks verifying the adequacy of the information provided 
by the model and the sensors. A fault is detected  when the 
residue goes away of  zero (for filter-based methods [1], ob-
servers [2] or space parity [3]) or when the parameters derived 
abnormally in the methods of parametric estimations [4]. 

The interval analysis permits to define an envelope in 
which the fault is considered as non-existent and any deviation 
of measurement inside this envelope is considered as normal. 
This approach has been explored by Adrot [5, 6] and applied 
to a mechatronic system by Letellier [7] 

II. INTERVAL ANALYSIS 

The state estimation  of a system is a problem solved if the 
system has  constant parameters or if it is subject to known 
statistical disturbances characteristics [8]. In general, estima-
tion techniques are based on the knowledge of mathematical 
model of the system. In addition, the information collected 
about a system are are given by  sensors whose reliability can 

be questioned [9], which can causes disruptive phenomena 
that undermine the ability of models to accurately reflect the  
systems behavior.  the used method  for changes in system pa-
rameters  considers bounded perturbations whose boundaries 
are known in advance. 

In general cases disturbances are unknown, so it is impos-
sible to determine the actual system state. The solution will be 
in the estimation of a domain which these states belong in. 
This problem is known  as "set-valued state estimation" [10-
13]and it can be formulated by considering the following 
model systems [8]: 
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Where ∈�n
x  is a system state, ∈�q

u is the input, 

∈�my  is the observed output; ( )v k et ( )w k are bounded dis-

turbances or uncertainties. The main goal is to estimate the 

bounds ( )( ) ( )− +
x k x k  of state ( )x k ,knowing the perturba-

tions limits ( )( ) ( )− +
v k v k  and ( )( 1) ( 1)− ++ +w k w k , the 

model S, and the output and input measures , we wish to At 
time k, the allowable state domain  is defined using the 

bounds ( )( ) ( )− +x k x k , of the, for example in the form of 

box: 

{ }, / ( ) ( ) ( )− += ≤ ≤
x k

D x x k x k x k  (2) 

At the time (k+1), the new domain 
, 1+x k

D  is constructed 

from previous domains 
, ,0, ,�

x k x
D D  of the new measure 

( ), ( 1)+u k y k and the bounds 

( )( ) ( )− +v k v k and ( )( 1) ( 1)− ++ +w k w k . For nonlinear sys-

tems, the analytical determination of the domain 
, 1+x k

D  is dif-

ficult and we must resort to numerical methods for evaluation. 
The case of linear systems is easier; the states domain can be 
represented by a polytope. 
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III. PROBLEM FORMULATION   

The hypothesis of measurement precision is not always 
valid because the sensors cannot be in most cases perfectly ac-
curate. This technological imprecision is often mentioned by 
the manufacturer [14]. 

Consider the nonlinear system with uncertain outputs de-
scribed by a multiple model with decoupled structure based 

on measurable decision variables (( ))ξ = u kk [15-17] 

( 1) ( ) ( )+ = +
i i i i

x k A x k B u k  (3) 

( ) ( ( )) ( )η=
ii i C iy k C k x k  (4) 
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x u et y  are respectively the state 

vectors, the input and output of the i
th

 sub-model. 

[ ]( ( )) 0,1µ ∈i u k represent the activation functions depending 

on the input. 
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i C
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Where ⊗ is the operator of multiplication of two matrices 

element by element. 
0

iC is the nominal matrix of ( ( ))η
iCiC k . 

∆
iC is the uncertainties amplitude matrix the of the elements of 

( ( ))η
iCiC k . η

iC is the matrix consisting of bounded and stand-

ard variables of i
th

 sub-model. 1,...,∈i M  

The uncertain matrix ( ( ))η
iCiC k  can be represented by 

their extreme limits, where it has the following form: 

( ( )) [ ] , , ( ) 1η η ∈ = ≤ i i
iC i ii CCC k C C k  

Recall that the relations (3), (4) and (5) describe a nonline-
ar system represented by M uncertain sub-models related by 

weighting functions ( ( ))µ
i

u k satisfying the properties of con-

vexity 
1

( ( )) 1,  and  0 1
M

i i

i

u tµ µ
=

= ≤ ≤∑ [18, 19] 

IV. STATE ESTIMATION  

From equation (4),  an estimated can be provided: 

� 1
( ) ( ( )) ( )η−=

i
i i c ix k C k y k  (7) 

Consider that the uncertain matrices ( ( ))η
iCiC k are square, 

observable, and bounded ( ( )) [ ] ,η  ∈ =  i
iC ii i

k C C CC , they can 

be replacing in (7) by their lower and upper bounds:  

�
(1)

1[ ( )] [ ] ( )−=i i i
x k C y k  (8) 

In (8) the estimated states �
(1)

[ ( )]ix k are obtained from a 

measurement system, as originally assumed valid. 

To solve this equation, there are many methods such as 
Gaussian elimination, the Gauss-Seidel iteration and the 
Krawczyk iteration [20, 21] which have already been used by 
Alhaj-Dibo[14, 22] to solve the same problem in the case of 
linear systems  

The optimal solution of �
(1)

[ ( )]ix k is the intersection of the 

three options provided by the three methods mentioned above. 

� � � �
(1) (1) (1) (1)

[ ( )] [ ( )] [ ( )] [ ( )]= ∩ ∩
G GS Ki i i ix k x k x k x k

 
(9) 

In the system equation (3) [ ( )]
i

x k  can be replaced by their 

estimated intervals calculated in (8),  the  estimated variables 
can be computed at time k and k +1 

� �
(2) (1)

[ ( 1)] [ ( )] ( )+ = +i ii i
x k A x k B u k  (10) 

In this case, the estimates �
(2)

[ ( 1)]+ix k are obtained from 

the system model (8) and measures (10).  

It can be concluded that the estimates of the state variables 
at time k +1 are calculated twice (from the system at time k 
and from measurements at time k +1). So the final local esti-

mates �[ ( 1)]+ix k are obtained by performing the intersection 

between the two estimates 

� � �
(2) (1)

[ ( 1)] [ ( 1)] [ ( 1)]

{1 }

+ = + ∩ +

= …

i i ix k x k x k

i M
 (11) 

The state estimation, in the case of multiple models with 
uncertain measures, is locally on each sub-model. 

V. FAULT DETECTION AND LOCATION 

At this stage, the whole system is considered faulty if one 
fault can be detected on one of the sub models. 

For fault location, residuals must be generated for the fault 
detection and location. So the local coherence between the es-

timates �
(2)

[ ( 1)]+ix k and �
(1)

[ ( 1)]+ix k at every time for 

{1... }∈i M will be tested 
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Consider that at the instant k measurements are safe. In this 

case the estimate obtained from the system model and meas-

urement model at the same time �
(2)

[ ( 1)]+ix k is coherent with 

the system model, which allows considering it as a reference 
in the comparison with the estimated obtained from measure-

ments at time k +1 �
(1)

[ ( 1)]+ix k
.
 

From the foregoing, one can judge the state of the local es-
timated, in the case of the safe functioning and faulty function-
ing 

� � �
(2) (1)

i i i[x (k 1)] [x (k 1)] [x (k 1)]+ = + ∩ +  For the safe function-

ing  (12) 

� �
(2)

i i[x (k 1)] [x (k 1)]+ = +  For the faulty functioning  (13) 

Referring to, the estimated interval calculated from equa-
tion (11) is analyzed. Two cases are possible: 

• If � � �
(2) (1)

[ ( 1)] [ ( 1)] [ ( 1)]+ = + ∩ + ≠ ∅i i ix k x k x k ; the 

estimated intervals � �
(2) (1)

[ ( 1)]  and [ ( 1)]i ix k x k+ + are 

coherent, which sub-model measures, at the same 
time k +1, are safe. 

• If � � �
(2) (1)

[ ( 1)] [ ( 1)] [ ( 1)]+ = + ∩ + = ∅i i ix k x k x k ; the 

two estimated intervals �
(2)

[ ( 1)]+ix k  

and �
(1)

[ ( 1)]+ix k  are not coherent where the 

measures of the hole system at the same time k +1, 
contain at minus one fault. The ith sub-model is then 
used to locate the fault. 

    In this case, the safe  state variables values are consid-

ered belong to the reference �
(2)

[ ( 1)]+ix k  only, and it is not 

possible to consider the estimated interval, obtained from the 

system model and measurements at time k +2 �
(2)

[ ( 2)]+ix k , 

as a reference to compare with �
(1)

[ ( 2)]+ix k . Fault must be 

corrected first. 

Using the system model  (3), the states variables are re-
placed by their  estimated considered as reference to the same 

time �
(2)

[ ( 1)]+ix k hence : 

� �
(2) (2)

[ ( 2)] [ ( 1)] ( 1)+ = + + +i ii i
x k A x k B u k

              
(14) 

To identify measures affected by a fault. Residues intervals 

are generated for each sub-model [ ( 1)]+
i

r k . From equation 

(4),  replaces the state variable at time(k+1)by their estimated 

considered as reference at the same instant �
(2)

[ ( 1)]+ix k and the 

matrix ( ( ))η
i C

C k by its value interval [ ]
i

C whence:  

�
(2)

[ ( 1)] [ ][ ( 1)] ( 1)+ = + − +ii i i
r k C x k y k

                  
(15) 

A measure is affected by a fault if the corresponding resi-
due is abnormal i.e. the residue interval corresponding does 
not contain the value 0. 

VI. EXAMPLE 

Consider a nonlinear system with three uncertain outputs 
described by the multiple model (3)(4)(5) with M=2 sub-
models were  

1

    0.51   -0.18   -0.23

    0.12    0.81   -0.1

   -0.29   -0.31    0.55

A

 
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2

0.5
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B

 
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[ ] [ ] [ ]
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1
11 1
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2

22 2
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2.09
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Activation functions ( ( ))µ
i

u k should be normalized to en-

sure the convexity property. They are represented in Figure 1 

 

Fig.1: Activations functions normalized depending on the input. 

A control U (k) with uniform distribution is applied to the 
system 
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Fig.2: control U (k) applied to the system. 

Assume that a fault affects the three sensors at different 
times, represents the safe system outputs and the faulty outputs 
at the instants [10, 20], [40, 50] and [60, 70]. 

 

Fig.3: outputs obtained with their corrections. 

Referring to relations (8), (10) and (11), generating an es-
timated interval of the state variables. This is considered as 
limited by the upper bound and the lower bound of the esti-
mated area. From the results one can determine an output es-
timate. The system measures should be included in the output 
domain estimation. Means that if the measurements exceed the 
upper or lower bound of the estimation domain, the sensor will 
be declared faulty. Figure 4 shows estimates of the three out-
puts as a closed area, and the three outputs measured (dashed 
line). 

 

Fig.4: Estimated and measured outputs. 

Note that, at the instants [10, 20], [40, 50] and [60, 70], the 
measurements y1, y2 and y3 exceed the limit of the estimation 
domain, where a fault is detected in the precise moment of the 
output concerned. To better locate faults affecting the system, 
the indicator signals that are also called residuals are generat-
ed. These signals will be in the form of a sealed envelope must 
contain the value zero as the system is not affected by any 
fault. Otherwise, zero will be located outside the envelope. In 
figure 5, the residuals envelopes of the three outputs are repre-
sented. 

 

Fig.5: residues. 

Note that each fault t impacts its residual at the right time. 
In this way, we get to perfectly locate defects. Iterating be-
tween 10 and 20, it has a fault that affects the first sensor, be-
tween 40 and 50; another fault affects the second output, and 
between 60 and 70 a third fault taints the last output. 

VII. CONCLUSION 

No sensor is considered perfect [23]. To ensure a robust 
diagnosis, this work, characterize the measurement uncertain-
ties using the interval analysis. Our contribution in this work is 
to use this method for the case of nonlinear systems described 
by multiple models structures with uncertain outputs. The used 
methods allow also estimating the system output and to detect 
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and locate faults in case of their presence. This method is ro-
bust to the measurement uncertainties. 

The presented method is an effective technique with a low 
cost of calculation and it can be generalized to the case of 
modeling or command uncertainties 
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